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On the reflected fractional Brownian motion process on

the positive orthant: asymptotics for a maximum with

application to queueing networks

ROSARIO DELGADO,∗ Universitat Autònoma de Barcelona

Abstract

Let W be a J−dim. reflected fractional Brownian motion process (rfBm) on the positive

orthant R
J

+, with drift θ ∈ R
J and Hurst parameter H ∈ (0, 1), and let a ∈ R

J

+, a 6= 0, be

a vector of weights. We define M(t) = max
0≤s≤t

a
T

W (s) and prove that M(t) grows like t if

µ = aT θ > 0, in the sense that its increase is smaller than that of any function growing

faster than t, and if a restriction on the weights holds, it is also bigger than that of any

function growing slower than t. We obtain similar results with tH instead of t in the

drift-less case (θ = 0). If µ < 0 we prove that the increase of M(t) is smaller than that

of any function growing faster than t, and also that (log t)
1

2(1−H) is a lower bound for

M(t). Motivation for this study is that rfBm appears as the workload limit associated to

a fluid queueing network fed by a big number of heavy-tailed On/Off sources under heavy

traffic and state space collapse; in this scenario, M(t) can be interpreted as the maximum

amount of fluid in queue at the network over the interval [0, t], which turns out to be an

interesting performance process to describe the congestion of the queueing system.
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1 Introduction

Up to now fractional Brownian motion (fBm) seems to be a very generally accepted theore-

tical model for traffic in modern broadband and high-speed networks, which usually exhibits

long-range dependence and self-similarity. Because queueing performance of this type of

traffic is substantially different from that of traditional short-range dependent traffic, it is a

challenge to analyze it.

By focusing on the asymptotic behavior of a single-server queue fed by a fBm, tail proba-

bilities of the steady-state workload process, which is a one-dimensional fBm process reflected

conveniently to be non-negative, have been studied by Norros [12] and Duffield and O’Connell

[5]. Their results were improved later by giving exact tail asymptotics by Massoulie and Si-

monian [11] and Hüsler and Piterbarg [8], [9]. Following the same line of research, Zeevi and

Glynn [15] give more results for a deeper understanding of this kind of single queue, related

to the behavior of the maximum workload (or fluid in queue, equivalently) over the interval

[0, t] when t → +∞ . In particular, they show that under heavy traffic, this maximum be-

haves like tH , where H ∈ (1/2, 1) is the Hurst parameter of the drift-less fBm process that

feeds the queue, while if the queue is stable, the maximum grows like (log t)
1

2(1−H) . Asymp-

totics for such a queue have also been considered in Duncan et al. [6], where applications to

ATM broadband connections are studied.

Is it still true that the maximum fluid in queue over the interval [0, t] grows in some sense

like tH when t → +∞ , in the drift-less case, if instead of a one-dimensional we consider a

multi-dimensional reflected fractional Brownian motion (rfBm) process W on the positive

orthant, with drift θ ∈ R
J , reflection matrix R and Hurst parameter H ? And what happens

in the case of non-zero drift θ ? The present work has been motivated by these questions.

If we define

M(t)
def
= max

0≤s≤t

J
∑

j=1

aj Wj(s) = max
0≤s≤t

aT W (s) , (1.1)

with a = (a1, . . . , aJ )T ≥ 0, a 6= 0, it happens that M(t) can be interpreted as the total

maximum fluid in queue over the interval [0, t] for a multi-class multi-server fluid queueing

network (we give more details below). In Section 3 we prove that for arbitrary H ∈ (0, 1),

the increase of M(t) as t → +∞, is closer to that of t if µ
def
= aT θ > 0, in the sense that it is

smaller than that of any function growing faster than t (Theorem 1), and that if a restriction
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on the weights a holds, we prove the tightness of this result in the sense that the increase of

M(t) is bigger than that of any function growing slower than t (Theorem 2). This restriction

is denoted by (HaR). In the drift-less case θ = 0 we obtain similar results but with tH

instead of t. Moreover, we also consider the case µ = aT θ < 0, which includes but is not

restricted to, the negative drift case θ < 0, and Theorems 1 and 2 give asymptotic lower and

upper bounds for M(t): (log t)
1

2(1−H) and any function growing faster than t, respectively.

Asymptotics for the maximum of stochastic processes in general is an important research

area with a long tradition in literature, especially for the case of Gaussian processes. That

notwithstanding, due to the difficulty given by the non-Markovian character of the fBm

process if H 6= 1
2 , and by the lack of Gaussianity of the reflected process, there is only a few

sets of results about the (one-dimensional) rfBm process. See for instance the aforementioned

works on the workload process associated to a single server queue. Up to our knowledge,

ours is the first attempt to obtain some results when dealing with a multi-dimensional rfBm

process, with or without a (linear) drift. In order to carry on that, it seemed natural to try

out the oscillation inequality for R−regularizations or solutions of the Skorokhod problem

given in [2] to take advantage of the Gaussian character of the fBm process, and this is what,

in fact, we have done.

The study of the maximum of a one-dimensional rfBm process with Hurst parameter

H > 1/2 in Zeevi and Glynn [15] is motivated by the fact that this process appears as

the workload (equivalently, as the fluid in queue) process of a single-server queue fed by a

fBm process. Here we study a maximum associated to a multi-dimensional rfBm process

motivated by application to queueing networks. Indeed, whenever H > 1/2 this maximum

appears as the total fluid limit in queue for a multi-class multi-server fluid network which

generalizes that analyzed in [15] and that can be described briefly as follows: the network can

process K fluid classes by using J stations which have a single server and an infinite buffer

at each one, with K ≥ J ≥ 1. Each server can process one or more fluid classes but each

fluid class can be processed at only one station. By following [13] we assume that the process

of external arrivals is generated by a large enough number of heavy-tailed ON/OFF sources.

Moreover feedback is allowed and a FIFO (first-in-first-out) and non-idling service discipline

is used. Under some assumptions mainly including heavy traffic (or asymptotical criticality)

and state space collapse, it is proved in [4] that the limits of the (J−dim.) workload and

(K−dim.) fluid in queue processes, conveniently scaled, exist, and that the workload limit
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is a rfBm process on the positive orthant S with drift vector θ = 0, some Hurst parameter

H ∈ (1/2, 1) and some reflection matrix R . The results from [4] will be quoted in more

detail in Section 4.1. State space collapse condition establishes that workload and fluid in

queue processes are related by means of a “lifting” matrix ∆, which depends on the service

discipline and allows the recovery of fluid of each class in queue from the workload at the

station at which that class is processed, even if two or more fluid classes are processed at

the same station; if Z and W denote respectively the limit of the fluid in queue and the

workload processes, then state space collapse says that Z = ∆ W . Let us define

M(t)
def
= max

0≤s≤t

K
∑

k=1

Zk(s) (1.2)

to be the maximum (total) amount of fluid in queue in the system (by summing the fluid in

queue over all fluid classes), on the interval [0, t]. Therefore, M(t) can be rewritten as (1.1)

for some weights aj > 0 which depend on the lifting matrix ∆, and W turns out to be a

rfBm process.

The organization of the paper is as follows: precise definitions, notations and terminology

will be introduced in the next section, where we also quote a technical result to be used in

Section 3, where our results and proofs are stated: Theorems 1 and 2, which give the upper

and lower bounds for M(t), respectively, for arbitrary H ∈ (0, 1) . Finally, Section 4 deals

with the multi-class multi-server fluid network to which we can apply our results, giving the

motivation for our definition of the maximum process associated to the rfBm when H > 1/2 ,

and some examples of such a network are studied.

2 Preliminaries

We will denote by I the identity matrix and by e the vector (1, . . . , 1)T (irrespective of

their dimension). Vectors will be column vectors and vT means the transpose of a vector

(or a matrix) v. By diag(v) we denote the diagonal matrix with diagonal elements the

components of vector v (in the same order). Inequalities for vectors must be understood in

the componentwise sense. For any fixed J ≥ 1, let S denote the positive orthant R
J
+ = {v =

(v1, . . . , vJ)T ∈ R
J : vj ≥ 0 ∀ j = 1, . . . , J ( i.e. v ≥ 0 ) }. For any v ∈ R

J , we use the

notation |v| def
=

J
∑

j=1

|vj | (where |x| denotes the absolute value of x ∈ R). For a non-negative



5

real number x, [x] denotes the maximum integer less or equal to x (the integer part of x).

P-lim denotes, as usual, the convergence in the probability sense. Φ stands for the standard

Gaussian distribution function, that is, Φ(x) =
1√
2 π

∫ x

−∞

e−
y2

2 dy for any x ∈ R .

For any real number t ≥ 0 and any continuous function f : [0, ∞) → R
J , we define

||f(·)||t def
= max

0≤s≤t

(

J
∑

ℓ=1

|fℓ(s)|
)

,

and introduce the notion of oscillation of function f by

Osc
(

f(·), [0, t]
) def

= max
0≤s≤r≤t

(

J
∑

ℓ=1

|fℓ(r) − fℓ(s)|
)

.

Note that in general

Osc
(

f(·), [0, t]
)

≤ 2 ||f(·)||t , and (2.1)

Osc
(

f(·), [0, t]
)

≥ ||f(·)||t if f(0) = 0 and f ∈ S . (2.2)

Loosely speaking, the reflected fractional Brownian motion (rfBm) process behaves like

a fractional Brownian motion (fBm) in the interior of the first orthant S, and is confined

to that orthant by instantaneous “reflection” at the boundary. Although it is known in the

literature, for the convenience of the reader we set here its definition as stated in [3], in

order to establish notations which will be used throughout the work. Previously we recall

the definition of the fBm process.

Definition 1 (The fractional Brownian motion) A stochastic process BH = {BH(t) =

(BH
1 (t), . . . , BH

J (t))T , t ≥ 0}, defined on some probability space, is called a (J-dimensional)

fractional Brownian motion (fBm) of (Hurst) parameter H ∈ (0, 1), starting from x ∈ R
J ,

with drift vector θ ∈ R
J and with associated matrix Γ (a J × J positive definite matrix), if

it is a continuous Gaussian process starting from x, with E
(

BH(t)
)

= x + θ t for any t ≥ 0,

and with covariance function given by

Cov
(

BH(t), BH(s)
)

= E
(

(

BH(t) − (x + θ t)
)(

BH(s) − (x + θ s)
)T

)

= ΓH(s, t) Γ,

for any t, s ≥ 0 , where ΓH(s, t) =
1

2

(

t2H + s2H − |t − s|2H
)

. For short, we will say that

BH is a J−dimensional fBm with associated data (x, H, θ, Γ).
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Definition 2 (The reflected fractional Brownian motion) A reflected fractional Brow-

nian motion (rfBm) on S with associated data (x, H, θ, Γ, R), where x, θ ∈ S, H ∈ (0, 1)

and Γ and R are J ×J matrices, Γ being a positive definite one, is a J−dimensional process

W = {W (t), t ≥ 0} defined on some probability space, with W (t) = (W1(t), . . . , WJ(t))T ,

such that

(i) W has continuous paths and W (t) ∈ S for all t ≥ 0, a.s.,

(ii) W = X + R Y a.s., with X and Y two J−dimensional processes defined on the same

probability space verifying:

(iii) X is a J−dimensional fBm with associated data (x, H, θ, Γ),

(iv) Y has continuous and non-decreasing paths, and for each j = 1, . . . , J , a.s., Yj(0) = 0

and
∞
∫

0

1{Wj(s)>0} dYj(s) = 0 (that means that Yj can only increase when W is on face

Fj = {y ∈ S : yj = 0}).
It is also said that the pair (W, Y ) is a R−regularization of X or that (W, Y ) is a solution

of the R−regularization problem of X . Note that by definition, W (0) = X(0) = x . In the

zero-delayed case, x = 0, and the drift-less case corresponds to θ = 0 .

Note that for any j = 1, . . . , J , the direction of the reflection on the jth face Fj is given

by the jth column of the reflection matrix R. The completely-S property of matrix R is

sufficient for the existence of the R−regularization of X , as can be seen in Theorem 2 [2].

But as is pointed out in the remark following that result, this property cannot ensure the

adaptness of process Y to a filtration to which X is adapted. Nevertheless, Proposition 4.2

[14] shows that under a stronger assumption on R, that we quote below and name (HR),

this problem is overcome (for more details we refer the interested reader to Section 2 of [3]).

(HR) Assumption on matrix R:

R can be expressed as I + Θ, with Θ a J × J matrix such

that 〈Θ〉 has spectral radius strictly less than 1 ,

where given a matrix A, 〈A〉 stands for the matrix obtained from A by replacing all the

elements of A by their absolute values.

For the sake of completeness, we quote here a technical result that will be used in the

proof of Theorem 2.
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Theorem 4.3.3. in [10] (part i)

Let {ξn} be a standardized stationary normal sequence with covariances {rn} satisfying

condition rn log n → 0 . Then, for 0 ≤ τ ≤ +∞ , if Mn = maxi=1,...,n ξi , for any sequence

of constants {un} we have that

P
(

Mn ≤ un

)

→ e−τ ⇔ n
(

1 − Φ(un)
)

→ τ . (2.3)

3 Main results

As explained in the introduction, in this section we study the asymptotic behavior as t → +∞
of the maximum process given by formula (1.1), that is,

M(t) = max
0≤s≤t

aT W (s)

for any vector a = (a1, . . . , aJ)T ≥ 0, a 6= 0, W being any zero-delayed rfBm process

W = X + R Y on S with associated data (x = 0, H, θ, Γ, R), where θ ∈ R
J , H ∈ (0, 1),

Γ is a positive definite J × J matrix, and R is a J × J matrix verifying assumption (HR).

Motivation for the study of this process when H > 1/2 is explained in the Introduction and

more detailed in Section 4.1.

Remark 1 It the drift-less case θ = 0, the distribution of the maximum M(t) can be

obtained directly by self-similarity, as is done in Proposition 2 in [15] in the one-dimensional

case. The argument is as follows: if (W, Y ) is a R−regularization of X , and for an arbitrary

process A we define a new process Ã by Ã(·) def
= A(r ·)/rH , then (W̃ , Ỹ ) is a R−regularization

of process X̃. We take into account that when θ = 0, X
D
= X̃, and as a consequence of the

uniqueness of the solution of the Skorokhod problem under assumption (HR), W
D
= W̃ (see

the discussion after formula (1) in [3]) . Thus

M(t) = max
0≤s≤t

aT W (s)
D
= tH M(1) ,

which immediately implies Theorems 1 and 2 for the case θ = 0 . Our results are established

in a rather general setting: we only need assumption (HR) for Theorem 1, and an additional

assumption denoted by (HaR) for Theorem 2. The obtention of tH as lower bound in

Theorem 2 in the drift-less case needs assumption (HaR) but is done in fact for the more

general case µ = 0 . We point out the difficulty of working in the multi-dimensional setting,
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due to the lack of a explicit expression for the pushing process Y in terms of the free process

X , which does exist in the one-dimensional case and facilitates work, making assumption

(HaR) unnecessary. In the examples of Section 4 we find restrictions on the parameters of

the model to ensure (HR) in such cases in which it is not trivially accomplished.

Theorem 1 below asserts that when t → +∞, M(t) cannot grow too much, in the sense

that M(t) grows less than any function f(t) growing faster than tH or t, depending on if

the drift vector θ equals zero or not, respectively, independently of the weights a . Thus,

Theorem 1 gives an asymptotic upper bound for the maximum.

Theorem 1 (Asymptotic upper bound) Under assumption (HR),

P- lim
t→+∞

M(t)

f(t)
= 0

for any positive real function f such that











lim
t→+∞

f(t)

tH
= +∞ if θ = 0

lim
t→+∞

f(t)

t
= +∞ otherwise.

Furthermore, this convergence to zero in the probability sense is, in fact, convergence in Lp

for any p ≥ 1 .

Proof: We split the proof into two main steps, corresponding to the convergence in the

probability and in the Lp sense, respectively.

Step 1: To prove the convergence in the probability sense, the main idea is to apply the

oscillation inequality for R−regularizations or solutions of the Skorokhod problem given by

Bernard and el Kharroubi [2], which provides a way to relate lower boundness condition on

M(t) expressed in terms of the rfBm process W , with a similar condition for the maximum

of process X , which is a more tractable process since X is a fBm process (in particular, it is

Gaussian).

Indeed, for any t ≥ 0, we have that

M(t) = max
0≤s≤t

aT W (s) ≤ |a| ||W (·)||t . (3.1)

Taking into account that (W, Y ) is a R−regularization of X , and that R is a Completely-S

matrix (consequence of (HR)), we can apply the oscillation inequality given in Lemma 1 [2],
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to obtain that a positive constant only depending on R (and not on t), say K ′
R, exists such

that for any t > 0 ,

Osc
(

W (·), [0, t]
)

≤ K ′
R Osc

(

X(·), [0, t]
)

.

Note that the fact that constant K ′
R does not depend on t is a main ingredient for the proof,

and this can be deduced by induction from the proof of Lemma 1 in [2]. A generalization of

this result, Theorem 5.1. in [14], claims explicitly that the constant only depends on R, and

this can be checked by following the induction steps of its proof.

By (2.1) and (2.2), by using that W (0) = 0 and W ≥ 0, it follows with KR = 2 K ′
R that

||W (·)||t ≤ KR ||X(·)||t ≤ KR

J
∑

j=1

max
0≤s≤t

|Xj(s)| .

Combining this inequality with (3.1) we obtain that

M(t) ≤ KR,a

J
∑

j=1

max
0≤s≤t

|Xj(s)| for any t ≥ 0 , (3.2)

with some positive constant KR,a (only depending on R and a).

We are now in position to show that for any ε > 0 and any function f as in the statement

of the theorem,

lim
t→+∞

P
( M(t)

f(t)
≥ ε

)

= 0 . (3.3)

In order to get this limit it is convenient to find an adequate upper bound for the probability,

which is obtained from (3.2) in this way:

P
(M(t)

f(t)
≥ ε

)

= P
(

M(t) ≥ ε f(t)
)

≤ P
(

J
∑

j=1

max
0≤s≤t

|Xj(s)| ≥
ε

KR,a
f(t)

)

≤

P
(

J
⋃

j=1

{ max
0≤s≤t

|Xj(s)| ≥
ε

KR,a J
f(t)}

)

≤
J

∑

j=1

P
(

max
0≤s≤t

|Xj(s)| ≥
ε

KR,a J
f(t)

)

. (3.4)

The proof of (3.3) will be completed therefore by showing that

lim
t→+∞

P
(

max
0≤s≤t

|Xj(s)| ≥
ε

KR,a J
f(t)

)

= 0 for any j = 1, . . . , J . (3.5)

In order to get (3.5), it is convenient to consider the random variable Xj(s) ∼ N(θj s, s2H Γjj)

for any fixed j and s, and define

Ψj(s)
def
= Xj(s) − θj s ∼ N(0, s2H Γjj) .
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Since Ψj(r t) has the same law as tH Ψj(r) (self-similarity property), we can bound max
0≤s≤t

|Xj(s)|
in law by tH max

0≤r≤1
|Ψj(r)| + θj t , and therefore

P
(

max
0≤s≤t

|Xj(s)| ≥
ε

KR,a J
f(t)

)

≤ P
(

max
0≤r≤1

|Ψj(r)| ≥ λj(ε, t)
)

(3.6)

with

λj(ε, t) =
ε

KR,a J

f(t)

tH
− |θj | t1−H = t1−H

( ε

KR,a J

f(t)

t
− |θj |

)

, (3.7)

which increases to +∞ when t → +∞ for any fixed ε > 0 , by the assumptions on f .

Consequently, (3.5) follows if we prove

lim
t→+∞

P
(

max
0≤r≤1

|Ψj(r)| ≥ λj(ε, t)
)

= 0 , (3.8)

but this immediately follows after noting that max
0≤r≤1

|Ψj(r)| is a finite random variable by

continuity of Ψj(·), since lim
t→+∞

λj(ε, t) = +∞ .

Step 2: Lp−convergence follows by checking the usual sufficient condition for the uniform

integrability:

sup
t

E
(

(M(t)

f(t)

)p+1
)

< +∞ for any p ≥ 1 . (3.9)

We now proceed to show (3.9). By (3.4) and (3.6) we have that for any y > 0,

P
( M(t)

f(t)
≥ y

)

≤
J

∑

j=1

P
(

max
0≤r≤1

|Ψj(r)| ≥ λj(y, t)
)

with λj(y, t) given by (3.7) (note that for any fixed t, lim
y→+∞

λj(y, t) = +∞, and that for

any fixed y, lim
t→+∞

λj(y, t) = +∞ ).

We can bound the expectation in (3.9) by using that λj(y, t) can be expressed as Aj(t) y−
Bj(t) , with Aj(t) =

1

KR,a J

f(t)

tH
and Bj(t) = |θj | t1−H , in this way:

E
(

(M(t)

f(t)

)p+1
)

=

∫ +∞

0

(p + 1) yp P
( M(t)

f(t)
≥ y

)

dy

≤
J

∑

j=1

∫ +∞

0

(p + 1) yp P
(

max
0≤r≤1

|Ψj(r)| ≥ Aj(t) y − Bj(t)
)

dy

=
J

∑

j=1

E
((max0≤r≤1 |Ψj(r)| + Bj(t)

Aj(t)

)p+1 )

=

J
∑

j=1

1

(Aj(t))p+1
E

((

max
0≤r≤1

|Ψj(r)| + Bj(t)
)p+1 )

. (3.10)
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If θj = 0, Bj(t) = 0 for any t and the expectation in the corresponding summand of expres-

sion (3.10) is bounded (by Borell’s isoperimetric inequality; a version of this result can be

found in Theorem 21, pag. 43 [1]). Moreover, on account on the assumptions on function f

lim
t→+∞

Aj(t) = +∞ and this summand converges to zero.

Otherwise, if θj 6= 0, lim
t→+∞

Bj(t) = +∞ and we can express the corresponding summand

in (3.10) as
( Bj(t)

Aj(t)

)p+1

E
( (max0≤r≤1 |Ψj(r)|

Bj(t)
+ 1

)p+1 )

,

where the expectation is bounded again, and then it converges to zero because

lim
t→+∞

Bj(t)

Aj(t)
= lim

t→+∞
|θj |KR,a J

t

f(t)
= 0 . �

Remark 2 The next result shows the tightness in cases θ = 0 and θ > 0, of the approxima-

tion of the increase of M(t) as t → +∞ given by Theorem 1 in the following sense: we will

see that M(t) grows more than any function g(t) than can be chosen growing only a little

bit slower than tH or t, depending on if θ = 0 or θ > 0, respectively, if the vector of weights

a verifies the following restriction involving the reflection matrix R:

(HaR) RT a ≥ 0

This assumption, as we will see in Section 4.2, can be easily checked in some interesting

examples.

Remark 3 Assumption (HR) implies that R is a Completely-S matrix, which is equivalent

to saying that R is strictly semi-monotone. This last property means that for each principal

sub-matrix R̃ of R, the system

R̃ x ≤ 0 and x ≥ 0

has the unique solution x = 0. In particular, this implies that RT a cannot be ≤ 0 since

a ≥ 0 but a 6= 0. Note that we need to impose (HaR), which is a more restrictive condition

in some sense (unless J = 1, in which case they are equivalent), but only for the vector of

weights a .

In the sequel, in addition to µ, already introduced in Section 1 as notation for aT θ, we

will use the notation σ2 def
= aT Γ a (> 0). Note that θ = 0 (respectively < 0, > 0) implies

µ = 0 (respectively < 0, > 0), but that the converses are not true.
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Theorem 2 (Asymptotic lower bound) Under assumptions (HR) and (HaR),

a) If µ ≥ 0, then

P- lim
t→+∞

M(t)

g(t)
= +∞

for any positive real function g such that











lim
t→+∞

g(t)

tH
= 0 if µ = 0

lim
t→+∞

g(t)

t
= 0 if µ > 0 .

b) If µ < 0, then

lim
t→+∞

P
( M(t)

(log t)
1

2(1−H)

≥ C
)

= 1 for any 0 < C <
( σ2

2 (−µ)2H

)
1

2(1−H)

.

Proof: We will prove that

lim
t→+∞

P
( M(t)

g(t)
≥ C

)

= 1 (3.11)

for any arbitrary C > 0 and g verifying the aforementioned assumptions if µ ≥ 0, in part a),

which implies that
M(t)

g(t)
is unbounded in probability, and for any 0 < C <

(

σ2

2 (−µ)2H

)
1

2(1−H)

and g(t) = (log t)
1

2(1−H) if µ < 0, in part b). The proof falls into several steps.

Step 1: Fix t > 0. We claim that for any δ ∈ (0, t) ,

M(t) ≥ max
k=1,...,[ t

δ ]
Vk(δ) (3.12)

with Vk(δ)
def
= aT

(

X(kδ) − X((k − 1)δ)
)

. (3.13)

Indeed, since process Y has non-decreasing paths, it follows that if 0 ≤ s ≤ t, Y (t)−Y (s) ≥ 0

and therefore aT R
(

Y (t) − Y (s)
)

≥ 0 by assumption (HaR), which implies −aT R Y (s) ≥
−aT R Y (t) , and therefore,

inf
0≤s≤t

(

− aT R Y (s)
)

≥ −aT R Y (t) . (3.14)

Taking into account that

0 ≤ aT W (s) = aT X(s) + aT R Y (s) ⇒ aT X(s) ≥ −aT R Y (s) ,
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accordingly to (3.14) we have that inf
0≤s≤t

aT X(s) ≥ −aT R Y (t) , which implies (by replacing

s by r and t by s) aT R Y (s) ≥ − inf
0≤r≤s

aT X(r) . On account of the above inequality, we

have

aT W (s) = aT X(s) + aT R Y (s) ≥ aT X(s) − inf
0≤r≤s

aT X(r)

(and with r = s − δ̃, for any δ̃ ∈ (0, s] )

≥ aT X(s) − aT X(s − δ̃) = aT
(

X(s) − X(s− δ̃)
)

. (3.15)

Fix now δ ∈ (0, t) . Since M(t) = max
0≤s≤t

aT W (s) ≥ max
k=1,...,[ t

δ ]
aT W (k δ) , choosing δ̃ = δ ∈

(0, k δ] , inequality (3.15) with s = k δ shows that

M(t) ≥ max
k=1,...,[ t

δ ]
aT

(

X(kδ) − X((k − 1)δ)
)

= max
k=1,...,[ t

δ ]
Vk(δ) ,

which is the desired inequality (3.12).

Step 2: By assumption, X is a (zero-delayed J−dimensional) fBm with associated data

(0, H, θ, Γ). Therefore, for any δ ∈ (0, t) and any k = 1, . . . , [ t
δ ] ,

X(k δ) − X((k − 1) δ) ∼ NJ

(

δ θ, δ2 H Γ
)

,

and consequently Vk(δ) defined by (3.13) is a (one-dimensional) Gaussian random variable,

Vk(δ) ∼ N
(

aT δ θ, δ2 H aT Γ a
)

= N
(

µ δ, σ2 δ2 H
)

.

We can normalize these variables by defining

Zk
def
=

Vk(δ) − µ δ

σ δH
∼ N(0, 1) , for k = 1 , . . . , [

t

δ
] , (3.16)

which form a stationary sequence of standardized Gaussian random variables (called frac-

tional Gaussian noise) with the property that their covariance function ρZ(ℓ)
def
= E

(

Z1 Z1+ℓ

)

goes to zero, when ℓ grows, in the sense that lim
ℓ→+∞

ρZ(ℓ) log ℓ = 0 , because H < 1 and

ρZ(ℓ) = H (2H − 1) ℓ2H−2 + O (ℓ2H−3) .

Consequently, we can apply (2.3) with τ = +∞: if we find non-negative functions of t, say

δ(t) (with 0 < δ(t) < t for t big enough) and u(t) > 0, such that by defining m(t)
def
=

[

t
δ(t)

]

we have that

(i) lim
t→+∞

m(t) = +∞ , and
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(ii) lim
t→+∞

m(t)
(

1 − Φ(u(t))
)

= +∞ ,

therefore we will obtain

lim
t→+∞

P
(

max
k=1,...,[ t

δ(t) ]
Zk ≥ u(t)

)

= 1 ,

and as a consequence and taking into account (3.16) and (3.12), we will deduce that

lim
t→+∞

P
(

M(t) ≥ u(t)σ (δ(t))H + µ δ(t)
)

= 1 . (3.17)

In order to check the limit in (ii), we can use the usual lower bound for the tail of the

standard gaussian distribution (see for instance inequalities (2.1) in [1]) to obtain

m(t)
(

1 − Φ(u(t))
)

≥ 1√
2 π

m(t)

u(t)

(

1 − 1

(u(t))2
)

e−
(u(t))2

2 .

Then, it is sufficient to see that

lim
t→+∞

m(t)

u(t)

(

1 − 1

(u(t))2
)

e−
(u(t))2

2 = +∞ . (3.18)

Step 3: The rest of the proof takes into account the sign of µ = aT θ, so we split it into

three cases:

• Case µ = 0

Fix an arbitrary C > 0 and define

δ(t)
def
=

(C g(t))1/H

(

σ2 log
(

t
g(t)1/H

)

)
1

2H

and u(t)
def
=

C g(t)

σ (δ(t))H
=

(

log
( t

g(t)1/H

)

)1/2

.

With these definitions, conditions (i) and (ii) in Step 2 are satisfied: (i) is true because

t
(g(t))1/H

(

log
(

t
g(t)1/H

)

)
1

2H

grows to +∞ by the assumption on function g, and we can see

that (ii) is also true by checking (3.18). Indeed, (3.18) is accomplished because

t

g(t)1/H

(

log
( t

g(t)1/H

)

)
1−H
2H

(

1 − 1

log
(

t
g(t)1/H

)

)

e
− 1

2 log
(

t

g(t)1/H

)

=

( t

g(t)1/H

)1/2 (

log
( t

g(t)1/H

)

)
1−H
2H

(

1 − 1

log
(

t
g(t)1/H

)

)

−→ +∞

By considering that u(t)σ (δ(t))H + µ δ(t) = u(t)σ (δ(t))H = C g(t) , (3.17) gives (3.11) in

this case.
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• Case µ > 0

Fix again an arbitrary constant C > 0 and define

δ(t)
def
=

C g(t)

µ
, and u(t)

def
=

(

log
( t

g(t)

)

)1/2

.

We next prove that both conditions (i) and (ii) in Step 2 are satisfied with these definitions.

Indeed, we see that (i) is true because lim
t→+∞

t

g(t)
= +∞ by the assumption on g, and (3.18)

holds because

t

g(t)

(

log
( t

g(t)

)

)−1/2 (

1 − 1

log
(

t
g(t)

)

)

e−
1
2 log

(

t
g(t)

)

=

( t

g(t)

)1/2 (

log
( t

g(t)

)

)−1/2 (

1 − 1

log
(

t
g(t)

)

)

−→ +∞

Taking into account that in this case u(t)σ (δ(t))H + µ δ(t) ≥ µ δ(t) = C g(t) and (3.17), we

have that (3.11) is accomplished and in this way we finish the proof of part a) of the theorem.

• Case µ < 0

The last case considered corresponds to part b) of the theorem. Fix an (arbitrary by the

moment) constant C > 0 and define

δ(t)
def
=

C (log t)
1

2(1−H)

−µ
and u(t)

def
=

2 C (log t)
1

2(1−H)

σ (δ(t))H
=

2 C1−H (log t)1/2 (−µ)H

σ

Condition (i) in Step 2 is accomplished since t

(log t)
1

2(1−H)
−→ +∞ as t → +∞ , and (3.18)

also holds because

t

(log t)
1

2(1−H)

(log t)−1/2 (1 − 1

log t
) e−

1
2σ2 4 C2(1−H) log t (−µ)2H

=

1

(log t)
2−H

2(1−H)

t1−
2 C2(1−H) (−µ)2H

σ2 (1 − 1

log t
) −→ +∞

if and only if 0 < C <
( σ2

2 (−µ)2H

)
1

2(1−H)

. In this case we have that

u(t)σ (δ(t))H + µ δ(t) = 2 C (log t)
1

2(1−H) − C (log t)
1

2(1−H) = C (log t)
1

2(1−H) ,

and the argument follows similarly to the other cases by replacing g(t) by (log t)
1

2(1−H) ,

obtaining that from (3.17), (3.11) holds. �
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Remark 4 We can introduce the level-crossing times for process aT W (·) in this way: for

any b > 0, let

T (b)
def
= inf{ t ≥ 0 : aT W (t) ≥ b } .

By the following relationship between these level-crossing times and the maximum,

{T (b) ≤ t } = {M(t) ≥ b } ,

we obtain from Theorems 1 and 2, analogously to Theorem 2 in [15], that as b → +∞ , the

growth of T (b) is:























like that of b if µ > 0

like that of b1/H if θ = 0 (⇒ µ = 0)

between that of b and that of e

(

b2(1−H)
)

if µ < 0 .

4 Application to queueing networks

4.1 The multi-class multi-server fluid queueing network

In this section, by following [4] we explain in some detail the multi-class multi-server fluid

queueing network already introduced in Section 1, to which we can apply the results of

Section 3, and give some specific notations that will be used in the examples of Section 4.2.

Let m = (m1, . . . , mK)T > 0 and M = diag(m), 1
mk

being the processing rate for the class

k fluid (thus mk being the corresponding mean service time). The many-to-one mapping

from fluid classes to stations is denoted by s; then s(k) is the station at which class k fluid

is processed and s−1(j) is the set of fluid classes processed at station j. We introduce the

J × K constituency matrix C = (Cjk) by

Cjk
def
=











1 if j = s(k)

0 otherwise

The exogenous arrival process is assumed to be generated in this way: for each fluid class,

say k, there are N i.i.d. ON/OFF heavy-tailed sources, with N tending to +∞; when one

of them is ON, it sends class k fluid to the network at deterministic rate (depending on

N) αN
k ≥ 0. Let αN = (αN

1 , . . . , αN
K)T and α

def
= lim

N→+∞
αN . Fluid is processed by each



17

server in a first-in-first-out (FIFO) discipline which is also assumed to be non-idling (work-

conserving), that is, a server is never idle if there is some fluid waiting to be processed at its

station. We also assume no capacity restriction in buffers.

We allow feedback in the system, that is, fluid can come back to revisit previously visited

stations (by conveniently changing class). Let P = (Pkℓ)
K
k,ℓ=1 be the sub-stochastic “fluid”

or “routing matrix” defined by: Pkℓ is the proportion of class k fluid that leaving station s(k)

goes next to station s(ℓ) as class ℓ fluid, and 1−
∑K

ℓ=1 Pkℓ ≥ 0 is the proportion that leaves

the network. It is assumed that P has spectral radius strictly less than one, and therefore,

matrix Q
def
= (I − PT )−1 is well defined.

Two main performance processes related with the multi-class fluid queueing network which

measure congestion and delay in the system are the J−dimensional workload and the K−di-

mensional fluid in queue. Workload is defined to be the amount of time required for any

server to complete processing of all fluids in queue (or being processed) at any given time,

and the fluid in queue is the amount of any fluid class in the queue or being processed at

any given time. For simplicity we assume to be zero the workload at time t = 0 .

Let ν be the constant depending on the (finite) expected values of the lengths of the ON-

and OFF- periods, νon and νoff respectively, defined by

ν
def
=

νon

νon + νoff
, (4.1)

and let λ be the unique K−dimensional vector solution to the traffic equation:

λ = α ν + PT λ ( that is, λ = Q α ν ). (4.2)

For any k, λk can be interpreted as the long run class k fluid rate into and out of station

s(k). As usual, the fluid traffic intensity for station j is defined by

ρj
def
=

∑

k∈s−1(j)

λk mk

and the corresponding vector is ρ = C M λ. We assume heavy traffic, that is, ρ = e. Let we

introduce the K × J matrix ∆ = (∆kj) defined by

∆kj
def
=











λk if k ∈ s−1(j) ,

0 otherwise .
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We also assume state space collapse condition, which is a condition that relates processes

Ẑ and Ŵ , obtained from the fluid in queue and the workload processes, respectively, when

the number of ON/OFF sources N goes to ∞, after multiply the original processes by
√

N .

Obviously, these two processes are related by means of

Ŵ = C M Ẑ , (4.3)

that is, for any station j,

Ŵj =
∑

k∈s−1(j)

mk Ẑk

since workload is the sum of the ratio between the amount of each fluid class in queue at

this station by its processing rate. State space collapse condition is established by means

of the “lifting” matrix ∆ as follows: Ẑ = ∆ Ŵ . This means that for any fluid class, the

amount of fluid in queue is a fixed portion of the workload at the station at which this class

is processed, that is, for any k,

Ẑk = λk Ŵs(k) .

In other words, under state space collapse we can recover the fluid in queue for each fluid

class from workload at the station at which that class is processed, even if at this station

two or more fluid classes are processed.

Note that if K = J then C = I and from (4.3) we have that Ẑ = M−1 Ŵ , that is, state

space collapse is trivially accomplished with ∆ = M−1 (then, λk = 1
mk

for any k).

If we assume that matrix C M Q ∆ is invertible, we can define matrix R by

R
def
= (C M Q ∆)−1 . (4.4)

Corollary 1 [4] establishes that in this setting, under assumptions (HR) on matrix R, heavy

traffic (ρ = e) and state space collapse (Ẑ = ∆ Ŵ ), processes Ŵ and Ẑ, conveniently scaled,

converge respectively to processes W and Z (verifying that Z = ∆ W ), W being a rfBm on

the first orthant S with associated data (x = 0, H, θ = 0, Γ, R), where H ∈ (1/2, 1).

Recall that in the Introduction we have defined the maximum (total) amount of fluid

in queue in the system over the interval [0, t] by (1.2). Taking into account that by state

space collapse Z = ∆ W , we can rewrite M(t) as

M(t) = max
0≤s≤t

eT ∆ W (s) ,
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and using that eT ∆ W =

K
∑

k=1

λk Ws(k) =

J
∑

j=1

(

∑

k∈s−1(j)

λk

)

Wj =

J
∑

j=1

aj Wj with

aj =
∑

k∈s−1(j)

λk > 0 for any j = 1, . . . , J , (4.5)

we observe that M(t) can be rewritten as (1.1) and by Remark 1, M(t)
D
= tH M(1) .

4.2 Some examples

4.2.1 The particular case K = J = 1: the single-class single-server network with

feedback

In the one-dimensional case (K = J = 1), we can consider in general a rfBm process

W = X + R Y on S = [0, +∞), with associated data (x = 0, H, θ, Γ, R), for any θ ∈ R,

H ∈ (0, 1), Γ > 0 and 0 < R < 2 (R verifies (HR) if and only if R ∈ (0, 2) in this case).

Thus, our results apply to

M(t) = max
0≤s≤t

a W (s)

for any a > 0 (since condition (HaR) is satisfied automatically for any R > 0).

In particular, this situation covers the application to any single-class single-server fluid

queueing network with feedback of the type considered in Section 4.1. In this case, P =

p, p being the proportion of fluid that finishing process at the station, comes back to be

reprocessed, with 0 ≤ p < 1. Then, R = 1− p since C = 1, M = m, Q = 1
1−p and λ = 1

m by

assuming heavy traffic. Taking into account that for K = J state space collapse condition

vanishes, we have that the workload limit of this queue is a one-dimensional rfBm process

with associated data (x = 0, H, θ = 0, Γ, R = 1 − p) with H ∈ (1
2 , 1) and some Γ > 0. The

particular case of no-feedback (that is, p = 0) is the one considered in [15] (then, R = 1).

The weight is a = λ = 1
m and then

M(t) = max
0≤s≤t

1

m
W (s)

is the maximum total amount of fluid in queue in [0, t], and M(t)
D
= tH M(1) by Remark 1 ,

which could also be obtained analogously to Proposition 2 [15].
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4.2.2 The single-class multi-server network (K = J > 1) with feedback

For this particular fluid queueing network the constituency matrix C is the identity, and if

we assume heavy traffic C M λ = e, we have that λk = 1
mk

for all k. Consequently, aj = λj

and

M(t) = max
0≤s≤t

J
∑

j=1

1

mj
Wj(s)

is the maximum total amount of fluid in queue in the network over [0, t]. Matrix R is given

by (4.4) and taking into account that Q = (I − PT )−1, we have that

R = (M Q M−1 )−1 = M (I − PT )M−1 = I − M PT M−1 ,

which verifies condition (HR) since the spectral radius of M PT M−1 coincides with that

of P , assumed to be strictly less than 1. Since State space collapse condition is also trivially

accomplished in this case because K = J with ∆ = M−1, our results can be applied in this

setting to M(t), and we obtain that M(t) grows like tH .

Note also that assumption (HaR) would be trivially accomplished because

RT a =
( 1

m1
(1 −

J
∑

ℓ=1

P1ℓ), . . . ,
1

mj
(1 −

J
∑

ℓ=1

Pjℓ), . . . ,
1

mJ
(1 −

J
∑

ℓ=1

PJℓ)
)T

,

which is ≥ 0 since P is a sub-stochastic matrix. In fact, this is true for any vector a ≥ 0 .

4.2.3 A tandem queue with feedback

Consider the fluid tandem queue displayed in figure 1, with two stations (J = 2) and three

fluid classes (K = 3), where class 1 fluid enters the system from outside (at rate αN
1 > 0)

and it is processed by server 1. After being processed (at constant processing rate 1/m1) by

the first server, this fluid goes into station 2 as class 3 fluid, where it is processed at constant

processing rate 1/m3. After that, a proportion q ∈ (0, 1] of fluid goes outside the network

while the proportion p = 1 − q ∈ [0, 1) goes back to station 1 to be reprocessed as class 2

fluid, at constant processing rate 1/m2, and then goes again to station 2 as class 3 fluid,

and so on. This model, which is the two-stage queueing system considered in Section 6.1

of [4] (where the interested reader is addressed for details), seems adequate, for instance, in

situations in which there is recycling, that is, quality control inspection is performed after

first stage at the second one, and fluid that does not meet quality standards is sent back to

station 1 for reprocessing. Case p = 0 corresponds to the non-feedback situation.
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Station 1 Station 2

p

q
m1

m2

α
N

1

m3

Figure 1: a tandem queue with feedback

In this case,

R =





1 −p m2

m3

−1 q + p m2

m3



 ,

which verifies condition (HR) if in case m2 > m3 we impose p < m3

2 m2−m3
(otherwise, (HR)

is always verified). In particular, in the non-feedback case (p = 0), this condition holds

automatically. By (4.5), a = (λ1 + λ2, λ3)
T = ( 1

m3
, 1

m3
)T and therefore we have that

M(t) = max
0≤s≤t

1

m3

(

W1(s) + W2(s)
)

is the maximum total fluid in queue in the system over the interval [0, t], and under heavy

traffic and state space collapse assumptions, if for m2 > m3 we have that p < m3

2 m2−m3
, we

obtain that the growth of M(t) is like that of tH .

From the expression of matrix R we can see that assumption (HaR) would be trivially

accomplished, in particular, for any vector of weights a = (a1, a2)
T > 0 such that a1 = a2.

4.2.4 A parallel-server example (with K = 4, J = 2)

Let us consider now the system with two parallel servers (J = 2) corresponding to figure 2

below.

Server 1 processes class 1 fluid, which arrives from outside at rate αN
1 > 0, and server

2 processes class 2 fluid, arrived from outside at rate αN
2 > 0. After finishing processing

at station 1, a proportion p1 of fluid goes next to station 2 as class 3 fluid, and the rest

q1 = 1− p1 exits the system. After finishing processing at station 2, a proportion p2 of fluid
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(independently of its class) goes next to station 1 as class 4 fluid, and the rest q2 = 1 − p2

exits the system. Proportion p1 is irrespective of the fluid class, 1 or 4. We have K = 4 fluid

classes with αN
3 = αN

4 = 0. Assume that 0 ≤ p1, p2 ≤ 1 but p1 p2 < 1 (to ensure that the

spectral radius of the routing matrix is strictly less than 1).

Station 1 Station 2

q1 q2

m2m1

α
N

1 α
N

2

p1

p2

Figure 2: a two parallel-server system with feedback

The mean service rates, assumed to depend only on the server (and not on the class), are

m1 > 0 for server 1 and m2 > 0 for server 2. Therefore, under heavy traffic we have that

λ =
( 1

m1
− p2

m2
,

1

m2
− p1

m1
,

p1

m1
,

p2

m2

)T

with the following restrictions:























0 ≤ p1 ≤ m1

m2
if m1 < m2

0 ≤ p2 ≤ m2

m1
if m2 < m1

p1 p2 < 1 if m1 = m2

(which imply p1 p2 < 1 in any case). Moreover, by formula (4.5),

a1 = λ1 + λ4 =
1

m1
(> 0) and a2 = λ2 + λ3 =

1

m2
(> 0) ,

so M(t) = max
0≤s≤t

( 1

m1
W1(s) +

1

m2
W2(s)

)

is the maximum total fluid in queue in the system
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over the interval [0, t] under heavy traffic and state space collapse. Taking into account that

C M Q ∆ =
1

1 − p1 p2





1 m1 p2

m2

m2 p1

m1
1



 and then R =





1 −m1 p2

m2

−m2 p1

m1
1



 ,

which trivially verifies assumptions (HR), we obtain that M(t) grows like tH .

Assumption (HaR) can be easily checked since p1 p2 < 1 and RT a =
(

1−p1

m1
, 1−p2

m2

)T ≥ 0 .
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